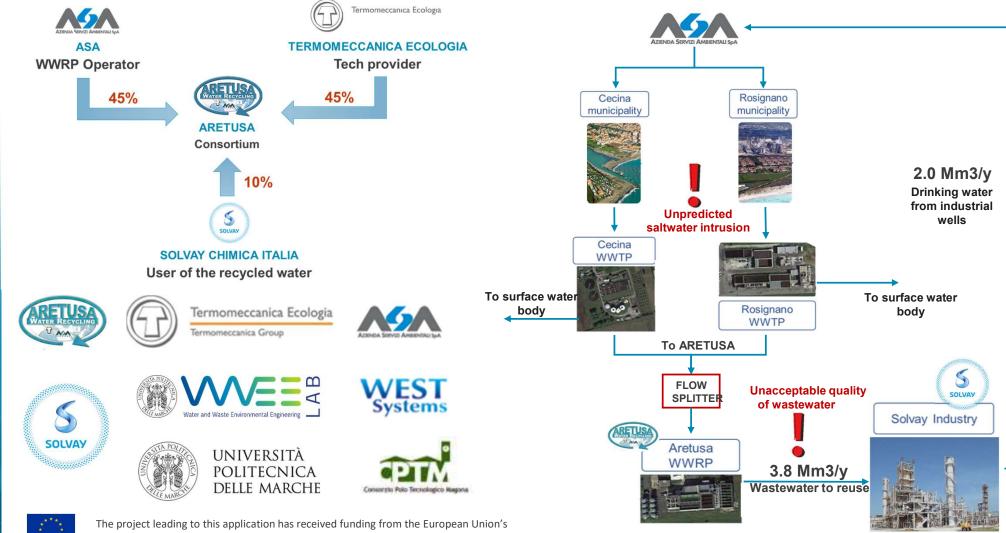
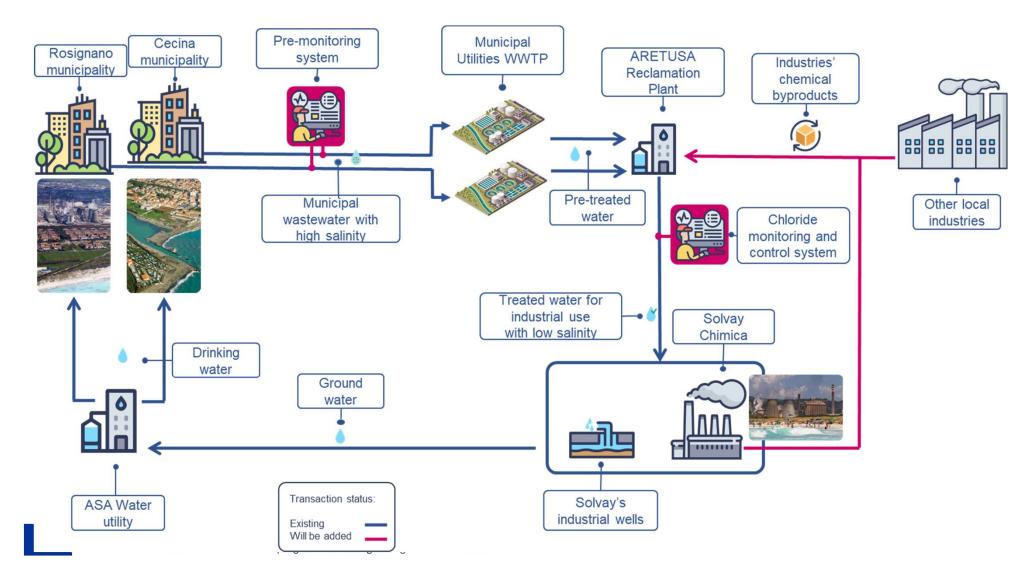


Innovative sensors and alternative materials for the removal of organic matter and micropollutants by adsorption and AOP technologies in ARETUSA (CS3).

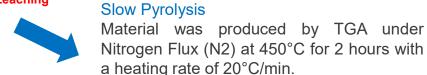

C. Bruni, M. Parlapiano, M. Sgroi, F. Fatone

July, 10th 2023.


ARETUSA urban-industrial symbiotic system

Horizon 2020 research and innovation programme under grant agreement No 869318

ARETUSA urban-industrial symbiotic system


Hydrochar for adsorption process

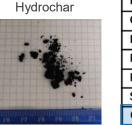
Hydrochar (HC) produced from sewadge sludge

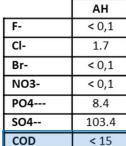
1×

	HC			
F-	54.2			
Cl-	44.4			
Br-	< 0,1			
NO3-	1.3			
PO4	38.5			
SO4	147.3			
COD	4200			

COD Leaching

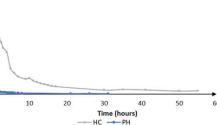
Chemical activation

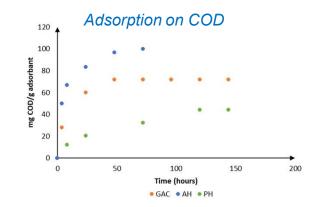

*Activation performed in CPTM laboratories


• Mixing of char pellets with KOH in flakes (KOH to char ratio: 1:1).

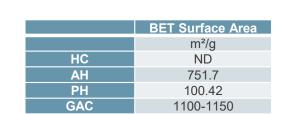
PTN

- Heating up to 600°C (5°C/min), isotherm for 1 hr and cooling (5°C/min) with N2 purging.
- Washing with 5M HCl and demi water (up to pH 7).
- Drying at 105°C until constant weight.


AH Activated






Optimal (chemical) activation of Hydrochar at pilot/demo scale is difficult → Pyrolysis was tested as more feasible alternative

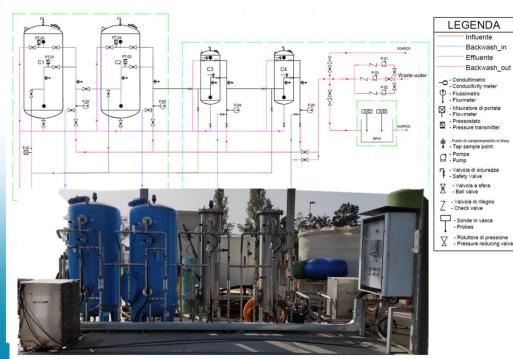
om the European Union's nt agreement No 869318

Hydrochar for adsorption process

Process scale-up

Slow Pyrolysis of Hydrochar at Pilot scale

Temperature (°C)	450
Flowrate of hydrochar (kg/h)	40
Residence time (min)	90



Granular Activated Carbons

					STANDARD SPECIFICATION - GBC 8x30				
CTANDADD	DECIFIC	ATIONIC CO	or.		Specifications	Units	Values	Method	
STANDARD SPECIFICATIONS - CSC5			Surface Area (BET)	m2/g	1000 ± 50	BET N2			
Specifications	Unit	Values	Methods		Ash content	%	12 ± 2	CEFIC 1986	
BET Surface area		500 ± 50	BET N2		Bulk density	g/cm3	0,50 ± 0.05	CEFIC 1986	
Ash content	%	< 10	CEFIC 1986	. 1	Moisture (as packed)	%	< 5	CEFIC 1986	
Bulk density		0,50-0,55	CEFIC 1986		lodine index	mg/g	950 ± 50	CEFIC 1986	
Humidity	%	< 2	CEFIC 1986		Hardness	%	> 95	On request	
Grain size:			Wet sieving		Half-length chlorination	cm	> 2.2	On request	
> 5 mm	%	0.5			Grain Size	enn	, ,,,	Sieving	
< 2 mm		1.5		n the Eur	> 8 mesh (2.4 mm)	%	< 5	Sieving	
Horizon 2020 rese	arch and i	nnovation prog	gramme under gran	it agreeme		%			
					< 30 mesh (0.6 mm)	70	< 5		

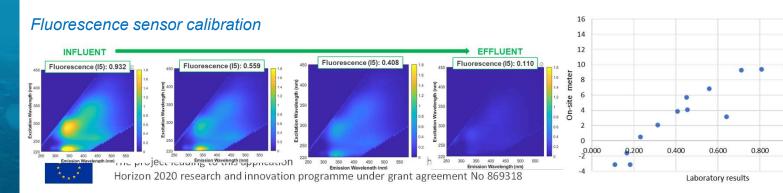
Pilot plant implementation – adsorption process

Monitoring system

Conductivity

🗸 pH

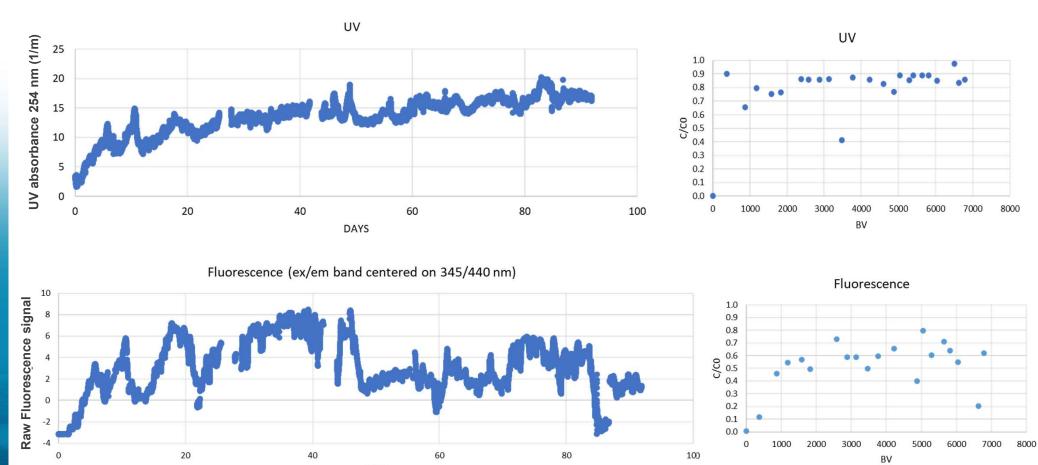
✓ UV absorbance sensor reading at 254 nm


Fluorescence sensor reading at the excitation/emission couple of 325/445 nm
Flowmeter

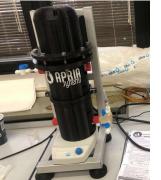
.

1.000

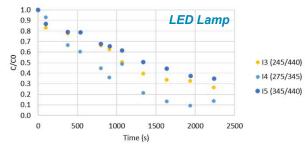
1.200

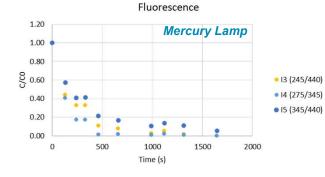


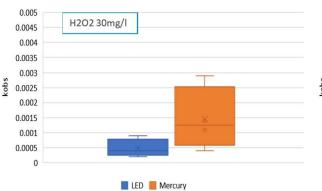
Adsorption pilot plant



DAYS The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318



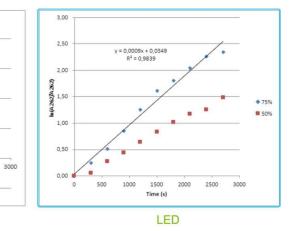

AOP Laboratory set-up and experimentation

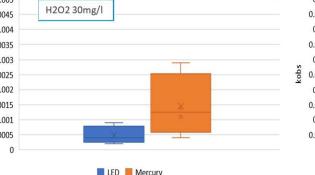


Fluorescence

2,00

1,50


1,00 0,50 0,50


0,00

-0.50

500

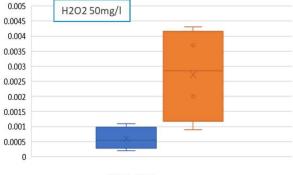
Actinometry test

Uridine 1

1500

Time (s)

MERCURY

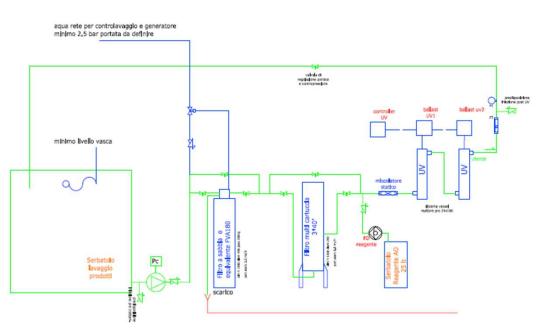

2000

2500

y = 0,0007x - 0,0387

R² = 0,9945

1000



LED Mercury

unding from the European Union's nder grant agreement No 869318

AOP Pilot plant

SKID EQUIPPED WITH:

- ✓ pressurization pump: 60 l/min, 1.9 bar
- ✓ sand filter: 3.5 mc/h 250 kg of sand
- ✓ multi-cartridge filter
- ✓ electromagnetic dosing pump
- \checkmark static mixer
- ✓ Viqua PRO 24-180mJ UV system
- ✓ electrical panel

g from the European Union's grant agreement No 869318

Thank You!

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318